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Abstract

We regularize conformal field theories in radial quantization
using lattice techniques. Only angular separations matter.
Scale is logarithmically discretized in equal intervals. As an
application, we set out to compute the critical exponent η for the
3D Ising model and present some preliminary results.

Lattice Radial Quantization. 2/20 ,



Outline

Beautiful theories

Conformal theories

Foliations

The icosahedral Transfer matrix

Spectrum

Regularization

Velocity of light renormalization

Preliminary numerical results

Lattice Radial Quantization. 3/20 ,



Outline

Beautiful theories

Conformal theories

Foliations

The icosahedral Transfer matrix

Spectrum

Regularization

Velocity of light renormalization

Preliminary numerical results

Lattice Radial Quantization. 4/20 ,



Being a snob
“Beauty” = nr. of nontrivial results

nr. of free continuos parameters . To be worthwhile of our
time, a beautiful theory ought to be relevant to Nature. Such
beautiful theories never are exactly soluble, nor are they
completely perturbative. The top examples for particle
physicists are

I The most relevant beautiful particle theory is QCD with a
moderate number of massless quarks.

I The most beautiful unparticle theory is SU(N) gauge
theory with massless fermionic matter in the conformal
window. Maybe it is relevant to Nature.

QCD is essentially a single scale theory, and lattice techniques
work and are in principle exact. Walking technicolor type of
theories are harder because they have too wide a range of
scales for an ordinary lattice approach. One can make
progress however by considering their conformal cousins. Of
primary importance are the anomalous dimensions of some
composite scaling fields in the IR.
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Main point and application

In a conformal theory there is no scale and only angles matter.
Rather than uniformly discretizing scales one should uniformly
discretize their logarithm as per AMR logic. Simulating a
conformal theory by uniformly discretizing scales might be
impractical. What to do in the “almost conformal” case is
another topic.
There is no point in further generalities. I’ll focus on the critical
3D Ising model because one can simulate it very efficiently
using cluster algorithms. The objective would be to exploit it
being a CFT in order to extract the anomalous dimension of the
magnetization operator. Our numerical results are preliminary.
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Radial quantization and its cousins

In radial quantization one views R3 as a sequence of 2D
concentric spherical shells whose radial density is uniform in
the logarithm of the radius measured from the common center.
The coordinates on the shells are angles. By a conformal
transformation flat R3 gets mapped into an infinite cylinder
raised on top of a 2D sphere. One quantizes by defining a
transfer matrix along the cylinder. The logarithm of the
eigenvalues of this transfer matrix provide the spectrum of
dimensions of all operators.
We could foliate R3 in other ways. We choose to foliate it into
concentric 2D icosahedral shells, again at uniform density in
the logarithm of the distance from the common center. The
shells have 20 flat equilateral triangular faces and 12 corners.
One can define now an icosahedral transfer matrix.
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Spectrum and states

The icosahedral transfer matrix T has the same spectrum as
the radial one: it consists of the exponent of all the eigenvalues
of the dilatation operator in the Wilson-Fisher CFT.
The eigenstates of T are different from the radial case. Most
spectral regularities would seem accidental because the SO(3)
invariance is hidden. Regularities reflecting the discrete
symmetry group I of the icosahedron remain evident. A
multiplet of angular momentum l under SO(3) would transform
irreducibly under I if l = 0,1,2 because the icosahedron has
3-fold and 5-fold symmetry axes. The remaining 2 irreps of I
appear in the decomposition of l = 3; their degeneracy would
seem accidental if we did not know about the hidden SO(3).
Let M(x) be the exact scaling field corresponding to the highest
eigenvalue of T in the Z2-odd sector. One can construct out of
it 5 orthogonal multiplets transforming irreducibly under I in
representations subduced from the l = 1,2,3 irreps of SO(3).
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Descendants

Let m0 be the dimension of M(x) and ml the dimensions of the
descendants constructed from M(x) for l = 0,1,2. One has

ml = m0 + l

At this point we went beyond just using scaling, which reflects
only dilatation invariance. The integer spacing is a
consequences of full conformal invariance. Our regularization
preserves (if present in the continuum) the crucial discrete
inversion transformation which extends the symmetry in the flat
case to the full conformal group.
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The lattice

Each equilateral triangle is replaced by a fine triangular mesh
defined by adding s − 1 extra points at equal distance on each
icosahedral edge. The total number of sites per shell is
10s2 + 2. Our UV cutoff Λ will be ∝ s for large s because the
size of a shell is some fixed number in terms of angular extent.
The UV cutoff is dimensionless in radial quantization.
On each site we place an Ising spin. To all intra- and inter- links
connecting sites i and j we attach the standard weight

ebσiσj

b > 0 is the Ising coupling and needs to be tuned to bc to get
into the domain of attraction of the Wilson Fisher fixed point.
The SW cluster update algorithm only needs the abstract graph
of the structure in order to proceed.
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Fixing homogeneity
Except at the corners, the shells are locally a flat triangular
lattice. Neighboring shells are connected chain like. There is
local regularity, but the approximate local discrete rotational
invariance around a vertex does no mix in-shell with intra-shell
directions.
For a given s, the eigenvalues corresponding to ml are µl and
the near shell separation is ∆τ = 1. The continuum shell
separation is ∆t . We define κ so that ml = κµlΛ. Then, t = τ

Λ to
ensure ml t = κµlτ .
We can extract κΛ from

µ′l − µl =
l ′ − l
κΛ

Then we can extract m0 from m0 = κΛµ0. The anomalous
dimension of M(x), η is defined by

m0 =
1 + η

2
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The refinement level is s and the number of shells is 16s; at
b = bc , κΛ ∝ s must hold to leading order in s. b = 0.16107.

b s µ2−µ1
µ1−µ0

s
κΛ η

0.16107 6 0.966(5) 0.724(2) 0.084(2)
0.16107 7 0.966(5) 0.728(1) 0.066(2)
0.16107 8 0.958(2) 0.7288(2) 0.052(1)
0.16107 9 0.954(2) 0.7311(2) 0.036(1)
0.16107 10 0.957(2) 0.7298(2) 0.044(1)
0.16107 11 0.961(2) 0.7267(2) 0.064(1)
0.16107 12 0.973(2) 0.7181(2) 0.123(1)

Previous simulations, using cubic shells and a different
approach, gave, after extrapolation to infinite cutoff,
η = 0.002± 0.010; the expected value is η ≈ 0.036.
Maybe we found the correct value of η at s = 9 not by accident.
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“Masses” or more correctly dimensions
We probably are not at b = bc(∞). Something is happening at
s = 9. Maybe we are in the would-be Z2 broken side of bc(∞).
Maybe periodic boundary conditions are better. So far, our
analysis has been rough.
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